
wolfSSL
Post-Quantum Cryptography (PQC) Update

Anthony Hu
Senior Software Developer

Tokyo, Japan
November 2024

1

1. NIST PQC Standards and CNSA 2.0

2. wolfSSL PQC History and Current Status

3. NIKE vs KEM

4. Benchmarking ECC vs ML-DSA and ML-KEM

5. wolfSSL PQC Readiness and Migration Efforts

6. What Others are Doing Together with wolfSSL

7. Barriers to Migration

Session Agenda

2

Company Overview

3

VoIP
Electric Grid

Cloud Services

Automotive / ADAS / ECUs

Battlefield Communication

Smart Energy

Appliances

Games

Sensors

Internet of Things

Databases
Mobile Phones

PrintersApplications
Connected Home

Industrial Systems

Routers

We Secure the Internet by Securing Data

Aviation

Medical Devices

Satellite

Federal Governments

Intelligent Systems

4

About wolfSSL

Data in TransitData at Rest Firmware Updates

- Secured with SSL/TLS, SSH

- Transfer Mediums:
TCP/UDP/Bluetooth/Serial/CA
N-BUS/ARINC, etc

- Secured with Cryptography - Secured with SSL/TLS,
crypto, MQTT, secure boot

- Prevent malicious firmware
flashing and updates

5

wolfSSL Technology Partners

6

wolfSSL Open Source Partners

7

Dual Licensed!

● Clean room SSL/TLS and Cryptography
● wolfSSL owns the Copyright

wolfSSL Products

8

● Conventional Algorithms

○ Vulnerable to quantum computers.

○ In the presence of a sufficiently powerful quantum computer, the private key can
be derived from the public key. For symmetric, the secret key brute force search
can be reduced by half.

○ Examples include ECC, RSA, DH, AES

● Post-Quantum Cryptography (PQC) Algorithms

○ No known attacks, even in the presence of a quantum computer

○ Generally newer algorithms using new math or hashes (Lattice based cryptography,
Isogenies)

○ Examples include ML-KEM, ML-DSA, SLH-DSA, LMS, XMSS

Conventional Algorithms Vs. Post-Quantum Algorithms

9

● Immediate Concerns

○ Data Harvesting (Harvest Now, Decrypt Later)

■ Encrypted data harvested now by malicious actors, then decrypted later when
quantum computers are available. Is this within the time you need it to stay
confidential?

○ Long-Lived Devices (Deploy and Forget)

■ Devices being deployed to the field and then forgotten will be susceptible to attack
later when quantum computers are available since they have not been updated.

● Mitigations and Migration

■ Use Hybrid Signature schemes (ex: ECDSA + ML-DSA via dual algorithm
certificates)

■ Use Hybrid Key Establishment (ex: ECDHE + ML-KEM)

■ Use Larger symmetric key size (256-bit cipher)

■ Bonus: Stay FIPS 140-3 compliant (NIST Certificate #4718; sunsets in 5 years in
2029. Most others are expiring in 2 years only.)

Post-Quantum Readiness

10

IETF / NIST
Stateful Hash-Based Signatures

11

● 2016 NIST Post-Quantum Standardization for Public-Key algorithms required signature
algorithm submissions to be “stateless”

○ “stateful” signature algorithms did not meet the API requirements, standardization was
separate from 2016 competition, coordinated along with IETF

○ “Stateful” means that the private key changes each time it is used.

● Stateful Hash-Based Signatures:
○ Not vulnerable to quantum computers

○ Well studied and very old

○ Better performance than stateless algorithms for sign/verify, but very slow keygen

○ Require careful state management; misuse is easy and catastrophic; all signatures must be
revoked

○ Appropriate for applications where private key resides in an HSM and private key
operations are offline (i.e.: firmware signing)

○ Gave a head start to digital signature scheme PQC migration

○ Will be mentioned when we talk about FIPS-205

Stateful Hash-Based Signatures

12

● IETF standardized both of the following Stateful Hash-Based Signature algorithms:

○ XMSS (RFC 8391, 2018) - eXtended Merkle Signature Scheme

○ LMS (RFC 8554, 2019) - Leighton-Micali Hash-Based Signatures

Stateful Hash-Based Signatures

13

● NIST SP 800-208 - “Recommendation for Stateful Hash-Based Signature Schemes”

○ Supplements FIPS 186 by approving two stateless hash-based schemes

○ Profiles LMS, XMSS, and their multi-tree variants:

■ Hierarchical Signature Scheme (HSS)

■ Multi-tree XMSS (XMSS^MT)

○ Approves some, but not all parameter sets from RFC 8391 / 8554

■ SHA-256 or SHAKE256 with 192 or 256-bit output

Stateful Hash-Based Signatures

14

+

NIST
PQC FIPS Standards

15

● NIST Post Quantum Security Levels

○ Level 1 - Equivalent to AES 128-bit block cipher key search

○ Level 2 - Equivalent to SHA2-256-bit hash collision search

○ Level 3 - Equivalent to AES 192-bit block cipher key search

○ Level 4 - Equivalent to SHA2-384-bit hash collision search

○ Level 5 - Equivalent to AES 256-bit block cipher key search

NIST Post-Quantum Cryptography Levels

16

● FIPS 203
○ Specifies ML-KEM

○ Based on CRYSTALS-KYBER

○ Defines 3 parameter sets (ECDH sizes are in parenthesis
for comparison)

○ Appropriate for replacement of quantum-vulnerable key
exchange algorithms (ex: ECDH, FFDH)

○ Performance is very good, cryptographic artifact sizes are
larger than ECDH / FFDH

NIST Post-Quantum Cryptography Standardization

17

Variant Encapsulation Key Decapsulation Key Ciphertext Shared Secret Key AES Equivalence

ML-KEM-512 800 (64) 1632 (32) 768 (64) 32 128

ML-KEM-768 1184 (96) 2400 (48) 1088 (96) 32 192

ML-KEM-1024 1568 (131) 3168 (66) 1568 (131) 32 256

● FIPS 204

○ Specifies ML-DSA

○ Based on CRYSTALS-Dilithium

○ Defines 3 parameter sets (ECDSA sizes are in parenthesis
for comparison)

○ Appropriate for replacement of quantum-vulnerable
digital signature algorithms (ex: ECDSA, RSA)

○ Performance is on par, cryptographic artifact sizes are
larger than ECDSA / RSA

NIST Post-Quantum Cryptography Standardization

18

Variant Public Key Private Key Signature AES Equivalence

ML-DSA-44 1312 (64) 2528 (32) 2420 (64) 128

ML-DSA-65 1952 (96) 4000 (48) 3293 (96) 192

ML-DSA-87 2592 (131) 4864 (66) 4595 (131) 256

● FIPS 205

○ Specifies SLH-DSA

○ Based on SPHINCS+ winner

○ Defines 12 parameter sets

○ Appropriate for replacement of Stateful Hash-based
Signature Schemes LMS/XMSS (but NOT suggested for
use in CNSA 2.0 guidance)

NIST Post-Quantum Cryptography Standardization

19

NSA (National Security Agency)
Commercial National Security Algorithm Suite 2.0

(CNSA 2.0)

20

NSA CNSA 2.0

● Notifies parties involved in National
Security Systems (NSS) that new
requirements are coming

● Requirements will mandate a switch to
post-quantum algorithms by 2030

● Mandates dropping requirements for
conventional algorithms and requiring only
post-quantum algorithms by 2033

● Released September 2022

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF 21

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

NSA CNSA 2.0

22

wolfSSL
PQC History and Current Status

23

● wolfSSL has included NTRU support since 2010!

○ We originally partnered with Security Innovation to bring experimental NTRU
support to wolfSSL

■ NTRU

● “N-th degree Truncated polynomial Ring Units”

● Deprecated and removed from wolfSSL as it is no longer being considered for
standardization

wolfSSL and Post-Quantum Cryptography

24

● In 2015, wolfSSL added support for QSH (Quantum Safe Hybrid) handshake extension
into TLS 1.2

○ https://tools.ietf.org/html/draft-whyte-qsh-tls12-02 ; expired

○ Deprecated and removed from wolfSSL

wolfSSL and Post-Quantum Cryptography

25

https://tools.ietf.org/html/draft-whyte-qsh-tls12-02

wolfSSL Products

26

● Current status and roadmap is following a step-wise approach

wolfSSL and Post-Quantum Cryptography

wolfSSL
(No NIST PQC support)

wolfSSL
(NIST PQC support via integrations with

3rd party libraries)

liboqs, pqm4, hash-sigs,
xmss-reference

wolfSSL
(NIST PQC support with native

wolfCrypt PQC implementations)

Completed: ML-KEM, ML-DSA, XMSS,
LMS

Status: DONE Status: DONE Status: IN PROGRESS

● Native wolfCrypt implementations
will be optimized for footprint,
memory usage, and
performance

● Falcon and SLH-DSA are the only
ones left

27

wolfSSL and Post-Quantum Cryptography

wolfSSL 5.0.0
Nov 1, 2021

wolfSSL 5.1.0
Dec 27, 2021

wolfSSL 5.3.0
May 3, 2022

wolfSSL 5.5.0
Aug 30, 2022

wolfSSL 5.5.1
Sept 28, 2022

wolfSSL 5.5.4
Dec 21, 2022

wolfSSL 5.6.4
Oct 30, 2023

Support for liboqs (Open Quantum Safe)
Support NIST Round 3 KEMs as TLS 1.3 groups (--with-liboqs)
Support hybridized NIST ECC groups with OQS groups

liboqs support for FALCON signature scheme
PQC support for Apache, cURL

PQC support and benchmarks for embedded STM32
wolfSSL/wolfCrypt support for calling PQM4 library for embedded use

liboqs support for CRYSTALS-Dilithium in TLS

liboqs support for CRYSTALS-Kyber, SPHINCS+
PQC keyshare support for DTLS 1.3

PQC cleanup, remove Kyber-90, old NTRU, SABER

DTLS 1.3 ClientHello PQC fragmentation support
LMS/HSS wolfCrypt support for hash-sigs library
XMSS/XMSS^MT wolfCrypt support for xmss-reference library

Flagship product. Cryptographic algorithm and TLS/DTLS protocol
implementations.

28

wolfSSL 5.7.2
July 8, 2024

Our own implementations of
XMSS, LMS, ML-KEM and
ML-DSA

wolfSSH and Post-Quantum Cryptography

wolfSSH 1.4.12
Dec 28, 2022

Add Hybrid ECDH-P256 Kyber-Level1

More interop, algorithm testing!
wolfSSH 1.4.14

Jul 7, 2023

ecc_p256-kyber-level1 hybrid interop with and AWS Transfer Family (Panos K. of AWS
Security is technical lead of the feature)

29

SSHv2 protocol implementation

wolfMQTT and Post-Quantum Cryptography

wolfMQTT 1.14.0
Jul 25, 2022

PQC support for KYBER_LEVEL_1, P256_KYBER_LEVEL1, FALCON_LEVEL1
Uses liboqs with wolfSSL
Connects to Mosquitto MQTT broker integrated with OpenQuantumSafe project
PQC with TLS 1.3 support for MQTT!

More interop, algorithm testing!

30

MQTTv5 publish and subscribe protocol implementation

wolfBoot and Post-Quantum Cryptography

wolfBoot 2.0.0
Nov 11, 2023

PQC Stateful Hash-Based Signature Scheme support with:
 + LMS / HSS
 + XMSS / XMSS^MT

More algorithms and testing!

31

Fully featured low level boot-loader for firmware on embedded systems

cURL and Post-Quantum Cryptography

curl 7.80.0
Nov 10, 2021

Support TLS 1.3 with KEM using wolfSSL with liboqs
Support KEM or Hybrid KEM with:
 + KYBER and NTRU
 + Hybrid: ECC P256, P384, P521

More algorithms and testing!

32

Command-line tool and library, non-interactive client for many
protocols

NIKE vs KEM

33

● NIKE

○ Non-Interactive Key Exchange

○ Examples: DH, ECDH

● KEM

○ Key Encapsulation Mechanism

○ Examples: RSA, ML-KEM

Some Definitions

34

● API

○ KeyGen(Out my_public_key, Out my_private_key);

○ Derive(In my_private_key, In peer_public_key, Out shared_secret);

● Protocol:

Client does KeyGen()

-------> client_public_key ------->

Server does KeyGen()

<------- server_public_key <-------

Client does Derive() Server does Derive()

Client has shared_secret Server has shared_secret

NIKE APIs and Protocol

35

● API

○ KeyGen(Out my_public_key, Out my_private_key);

○ Encapsulate(In peer_public_key, Out ciphertext, Out shared_secret);

○ Decapsulate(In my_private_key, In ciphertext, Out shared_secret);

● Protocol:

Client does KeyGen()

-------> client_public_key ------->

Server does Encapsulate()

<------- server_ciphertext <-------

Client does Decapsulate()

Client has shared_secret Server has shared_secret

KEM APIs and Protocol

36

● In a NIKE, Keygen() and Derive() are each called twice

● In a KEM, Keygen(), Encapsulate() and Decapsulate() are each called once

● Therefore, when comparing the benchmarks for NIKEs and KEMs, you must double the
time for the operations of the NIKEs for a fair comparisons!

So What?

37

Benchmarking ECC vs ML-DSA and ML-KEM

38

ECDH vs ML-KEM (DOUBLED!)

39

ECDSA vs ML-DSA

40

ECC SECP256R1 key gen 74600 ops took 1.001 sec, avg 0.013 ms, 74507.858 ops/sec

ECDHE SECP256R1 agree 19500 ops took 1.004 sec, avg 0.052 ms, 19415.926 ops/sec

ECDSA SECP256R1 sign 48500 ops took 1.001 sec, avg 0.021 ms, 48460.012 ops/sec

ECDSA SECP256R1 verify 18400 ops took 1.003 sec, avg 0.055 ms, 18338.526 ops/sec

ML-DSA 44 key gen 15900 ops took 1.006 sec, avg 0.063 ms, 15807.566 ops/sec

ML-DSA 44 sign 3900 ops took 1.012 sec, avg 0.260 ms, 3853.441 ops/sec

ML-DSA 44 verify 14100 ops took 1.004 sec, avg 0.071 ms, 14041.845 ops/sec

ML-KEM 512 key gen 226500 ops took 1.000 sec, avg 0.004 ms, 226493.466 ops/sec

ML-KEM 512 encap 214800 ops took 1.000 sec, avg 0.005 ms, 214740.610 ops/sec

ML-KEM 512 decap 127400 ops took 1.001 sec, avg 0.008 ms, 127305.302 ops/sec

P-256 ECC vs ML-DSA-44 and ML-KEM-512

41

ECC SECP384R1 key gen 22900 ops took 1.002 sec, avg 0.044 ms, 22847.325 ops/sec

ECDHE SECP384R1 agree 5500 ops took 1.016 sec, avg 0.185 ms, 5414.530 ops/sec

ECDSA SECP384R1 sign 15700 ops took 1.004 sec, avg 0.064 ms, 15636.482 ops/sec

ECDSA SECP384R1 verify 5000 ops took 1.005 sec, avg 0.201 ms, 4975.211 ops/sec

ML-DSA 65 key gen 8500 ops took 1.003 sec, avg 0.118 ms, 8471.859 ops/sec

ML-DSA 65 sign 2400 ops took 1.001 sec, avg 0.417 ms, 2398.061 ops/sec

ML-DSA 65 verify 8800 ops took 1.002 sec, avg 0.114 ms, 8778.814 ops/sec

ML-KEM 768 key gen 131500 ops took 1.000 sec, avg 0.008 ms, 131447.224 ops/sec

ML-KEM 768 encap 128700 ops took 1.001 sec, avg 0.008 ms, 128624.806 ops/sec

ML-KEM 768 decap 79600 ops took 1.002 sec, avg 0.013 ms, 79457.937 ops/sec

P-384 ECC vs ML-DSA-65 and ML-KEM-768

42

ECC SECP521R1 key gen 13100 ops took 1.004 sec, avg 0.077 ms, 13048.826 ops/sec

ECDHE SECP521R1 agree 3400 ops took 1.012 sec, avg 0.298 ms, 3360.219 ops/sec

ECDSA SECP521R1 sign 7400 ops took 1.000 sec, avg 0.135 ms, 7398.915 ops/sec

ECDSA SECP521R1 verify 3100 ops took 1.012 sec, avg 0.326 ms, 3064.356 ops/sec

ML-DSA 87 key gen 5700 ops took 1.006 sec, avg 0.176 ms, 5668.430 ops/sec

ML-DSA 87 sign 2100 ops took 1.040 sec, avg 0.495 ms, 2019.394 ops/sec

ML-DSA 87 verify 5500 ops took 1.016 sec, avg 0.185 ms, 5415.962 ops/sec

ML-KEM 1024 key gen 87900 ops took 1.001 sec, avg 0.011 ms, 87800.567 ops/sec

ML-KEM 1024 encap 82700 ops took 1.000 sec, avg 0.012 ms, 82683.185 ops/sec

ML-KEM 1024 decap 53300 ops took 1.001 sec, avg 0.019 ms, 53226.549 ops/sec

P-521 ECC vs ML-DSA-87 and ML-KEM-1024

43

wolfSSL PQC Readiness and Migration
Efforts

44

NSA CNSA 2.0 Stance on Hybrids

45

Q: What is NSA’s position on the use of hybrid solutions?

A: NSA has confidence in CNSA 2.0 algorithms and will not require NSS
developers to use hybrid certified products for security purposes. Product
availability and interoperability requirements may lead to adopting hybrid
solutions.

NSA recognizes that some standards may require using hybrid-like
constructions to accommodate the larger sizes of CRQC algorithms and will
work with industry on the best options for implementation.

Source: https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF

NIST Stance on Hybrids in Key Establishment

46

Q: Is it possible for a hybrid key-establishment mode (i.e: ECC and ML-KEM
concatenation) to be performed in a FIPS 140 approved mode of operation?

A: ... In any of the key derivation methods specified in SP 800 - 56C, the
revision would permit a concatenation of Z and T, e.g., Z||T, to serve as the
shared secret instead of Z. This would require the insertion of T into the coding
for the scheme and the FIPS 140 validation code may need to be modified.

NIST Stance on Hybrids in Authentication

47

Q: Is it possible for dual signature generation or verification to be performed in
a FIPS 140 approved mode of operation?

A: ... Like hybrid key establishment schemes, dual signatures can be
accommodated by current standards in “FIPS mode,” as defined in FIPS 140,
provided at least one of the component methods is a properly implemented,
NIST-approved signature algorithm.

wolfSSL’s Stance on Hybrids

48

We support them!

- D(TLS) 1.3
- P256_KYBER_LEVEL1
- P384_KYBER_LEVEL3
- P521_KYBER_LEVEL5
- Dilithium hybridized with ECC via dual algorithm certificates as

specified in the 2019 edition of the X.509 standard
- X9.146 (Banking standards body) TLS 1.3 extensions for dual

algorithm verification
- SSH

- Ecc_p256-kyber-level1 Key exchange

Example Hybrid Certificate Usage in TLS 1.3

49X.509 Root CA
Certificate

X.509 Server
Certificate

wolfssl

examples/server/server

Client Server

Post-Quantum
TLS 1.3

wolfssl

Conventional
Private

Key

Alternative
Private

Key

examples/client/client

signature
signature

signature
signature

What Others are Doing Together with
wolfSSL

50

● Web Servers

○ Apache
https://github.com/wolfSSL/osp/blob/master/apache-httpd/README_post_quantum.md

○ Nginx
https://github.com/wolfSSL/wolfssl-nginx?tab=readme-ov-file#post-quantum-algorithms

○ Lighttpd
https://github.com/wolfSSL/osp/tree/master/lighttpd/lighttpd-1.4.50/wolfStartUp

● Secure Tunneling

○ Stunnel
https://github.com/wolfSSL/osp/blob/master/stunnel/5.57/README_UNIX.md#stunnel-
with-experimental-post-quantum-algorithms

Open Source Project Integrations

51

https://github.com/wolfSSL/osp/blob/master/apache-httpd/README_post_quantum.md
https://github.com/wolfSSL/wolfssl-nginx?tab=readme-ov-file#post-quantum-algorithms
https://github.com/wolfSSL/osp/tree/master/lighttpd/lighttpd-1.4.50/wolfStartUp
https://github.com/wolfSSL/osp/blob/master/stunnel/5.57/README_UNIX.md#stunnel-with-experimental-post-quantum-algorithms
https://github.com/wolfSSL/osp/blob/master/stunnel/5.57/README_UNIX.md#stunnel-with-experimental-post-quantum-algorithms

Post-Quantum Readiness / NCCoE

52

Crypto4A and wolfSSL Interoperability Demo

53

wolfboot

Firmware Image

Micro Controller

LMS Public Key
(Stateful)

Firmware
Signature

AWS Crypto and wolfSSL Interoperability Demo

54

https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-
aws-transfer-family/

https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/
https://aws.amazon.com/blogs/security/post-quantum-hybrid-sftp-file-transfers-using-aws-transfer-family/

ExpressVPN Using wolfSSL PQC in Production

55

https://www.expressvpn.com/blog/lightway-post-quantum/

https://www.expressvpn.com/blog/lightway-post-quantum/

● Inertia and a lack of prioritization

● Lack of awareness

● (Historical) lack of standards

● (Historical) Lack of requirements (Whitehouse memos, NSM-10)

● Lack of enforcement (Who is enforcing CNSA 2.0?)

● Faulty reasoning about quantum computers

○ The question is NOT when will quantum computers break cryptography.

○ The question is when do I need to comply with upcoming requirements?

Barriers to Migration

56

Thanks!
facts@wolfssl.com

57

mailto:facts@wolfssl.com

